
 

Embedded curves

P nonsingular projecting tweeted

Def be P
p Hcp b hyperplane
The projection from b to H is the

morphism
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and is givenby the data

Opmyh bito boxi n bita burn
in the linear system
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Def the tangent line of aeXc P
the unique line LCP such that

mult Lnx



If X is given by the equations
fp fr then Talk is

given by the vanishing locus of
the homogenous equations
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Prof be Phx
95 Toi ph
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b dp9 injective off b Tp X

Thus 9 is a closed embeddingiff.bepT Tp X for all pigex
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Proof a 9s is given by linear system
of hyperplanes through b
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sec x Key PT P secant variety
p 9

locally the image of
XXX Δ x PT Ph

p g t to point t on pg
Sei x IP locally closed subset

of dim 3

Tan X pf Tp X tangentvariety

locally the image of
IPT Ph

p tl to point t on Tp X
Tan X P closed subset of
dim 2

Gb is a closed embeddingˢ
be secx utan X

Corollary if 474 be Phx
sit 9 is a closed

embedding

Pf dim Ph 4 dim Sec x Tan X

Ph Sec x u Tan x nonempty



Theory Every us proper care can be

embedded in IP3

Proof v ample line bundles on

embedding Xc 1PM

if 473 done

else be IP sec x utan x

X c ph 1

Conclude by induction

I want to mention the following
theorem

the If g x 72 then Aut X
is finite

Proffenypevelliptic then every
automorphism permutes the
ramification points of the

hyperelliptic cover

if X not hyperelliptic then Autly
permates the hyperoscullation points
of the canonical embedding



Bertini theorem

Def consider the projective space
IP w coordinates Xo in

The dual projective space is a

projective space Ph w coordinates no a

together with the data of the
incidente variety
I aoxot.it anxn o p H pet

IP Eph page page

Every point
HJÉCÉÉj interpreted

as a hyperplane
Pho H doxot tank I INCHY CH

via this correspondence and vice versa

Def X P subvariety
PEX PEHEx pH p e singular
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if X stth can be explicitly described



in terms of equations
X Zx dual variety

Theory Bertini
C P us subvariety of dim d
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2 Xn H is us of dim d 1

Proof sketch
Can take u 1PM XV

fibres of T Zx X our p
CHI CHIU Ifl ftp.tmfind.cnH
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dim Zx n n dim X dim x

dim x n 1
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Hilbert polynomial
c P projective variety

0 11 itOpnM veryample line bundle
FEQCOUX F m F 0 1710 M

Theorem For all Fetch X there is a

Tolynomial Pf t EQ t sit

mE2 PF m x F m

Moreover PF m ho F ml for MDO

Def PFC is called the Hilbertpolyncal
of F

Pyl 1 Pox t is the

tkrtpoly.at
I depends on 0 117 embeddin Cph

Proof replacing 7 by i F why P

use Hilbert syzgy theorem w o proof
Fact For all I Con IP there is

a finite resolution of length n 1
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additivity of p
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Examples Ppu t 4th

Lema If P t
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lower order terms

sit Plm 2 for all mez

Then In for de 2

Lemmy deg PxH1 dim X

Def the degree of Cph is

deg X dim X Adim

Px t Adimex tdim t



Lemmy Ya IP degree I Hypersurface
then deg Yd d

Proof Have s.es

Opn m d Opu

Pyalm Mt undth
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flower order terms

Ef d mn lower orderterms

m lower order terms

carve L v ample line bunLenny p Ho L
Then deg X deg L

Pf Lom 1 g deg L m
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Remarl constant term

Px
c X Ox

does not depend on P

Pa X tridimex x yay 1

arithmetic genus

Bezout
Thefft irred variety YC IP hypersurf

deg Ynx deg Y deg X

Pf use s.es

Tynx Ox Oxny 0

E d

Now have the right conceptual
tools to make sense of sentences like
The tangent line of a point on a

plane came X is the unique line

L sit it intersects X at p w

degree 2


